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ABSTRACT

Rather than analyse an audio signal directly, many beat tracking
algorithms perform some transformation of the input, commonly
using note onset times or apply a mid-level representation which
emphasises them, as the basis for extracting beat times. In this
paper we investigate the importance of the input representation
by comparing seven different onset detection functions as input
to our beat tracker, while keeping all other aspects constant.
Results indicate that the complex spectral difference approach
is both an efficient and accurate representation for identifying
beat times. However we illustrate that significant improvements
(which exceed the current state of the art) are possible using mul-
tiple detection functions with an adaptive input selection stage.
Towards this aim, we find that input selection based on musical
genre offers a small increase in accuracy, where as beat strength
fails to improve performance.
Keywords – Beat tracking, onset detection, mid-level representa-
tions

1. INTRODUCTION

There can be little argument that information related to temporal
structure is useful in computational rhythmic analysis. Whether
it is the explicit extraction of note onset times [1, 6, 9] or the
generation of some mid-level representation (e.g. an onset de-
tection function) which emphasises them [12, 5]; for the task of
beat tracking, some form of pre-processing appears essential.
This raises the question of whether the extra computation re-
quired to extract onsets, by finding the indices of local maxima
in the detection function (taking a step towards a more symbolic
approach) allows for greater accuracy in beat tracking, or if on-
set detection functions actually encode rhythmic information be-
yond note onset locations which might aid the beat extraction
process.
We demonstrate that while keeping all other features of our beat
tracker constant, the use of a detection function rather than a
train of onsets (a sequence of impulses at onset times weighted
by their strength) leads to significantly better results, largely in-
dependent of the choice of detection function.
Assuming this to be a general result (beyond the small test database
we use), we then seek to discover how important the choice of
detection function is as the primary input.
We examine seven different detection functions to identify which
onset detection function is the best “beat detection function”.
While spectral difference based approaches appear to generalise
well over the entire dataset, preliminary results indicate that some
examples within our test set are better suited to particular detec-
tion functions than others. In the most extreme case of over-
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fitting (where the best performing detection function is matched
to each input file) a 15 % improvement in performance can be
made. However the manual selection of a detection function in
this manner is by no means practical. We would therefore like
to discover some means to adaptively select an appropriate in-
put representation to match the characteristics of the input sig-
nal. Towards this aim we examine whether meta-data related to
musical genre is sufficient to improve performance, i.e. select
detection function X for jazz, and Y for rock. We compare this
manual approach to automatically extracting a feature related to
beat strength [13] within a fully adaptive process.
Selecting detection functions based on musical genre offers a
small improvement, but surprisingly the somewhat intuitive fea-
ture of beat strength fails to yield any improvement. Analysis
beyond these two features is left as a topic for further research,
which we believe should include the collection of more meta-
data in combination with machine learning techniques to better
identify those features which are most salient to our beat track-
ing formulation.
The remainder of this paper is structured as follows: in section
2 we describe the onset detection functions used as inputs to our
beat tracker, followed in section 3 by an overview of the beat
tracker itself as well as our chosen evaluation method. Results
are presented in section 4, with a final overview and conclusions
in sections 5 and 6.

2. MID-LEVEL INPUTS

The mid-level inputs, or onset detection functions we use as the
input to our beat tracker are taken from two recent onset detec-
tion comparative studies [2, 4]. As illustrated in these compar-
isons, the performance of any individual detection function is de-
pendent on the properties of the input signal. Two main types of
onsets have been identified: percussive and tonal. Percussive on-
sets can be either pitched (a piano note) or non-pitched (a drum
hit) and are characterised by sharp changes in signal energy and
are typically easy to detect. Tonal onsets (a bowed violin note)
however are harder to identify as little or no energy change may
be perceptible. The detection of tonal onsets is therefore reliant
on some pitch or harmonic based analysis.
A breakdown of the onset detection functions we use are given in
table 1, indicating their sensitivity to both types of onsets along
with the approximate time taken to process 1 minute of mono
audio sampled at 44.1kHz1 . Those without specific names are
given the name of the primary author. Each detection function is
shown graphically in figure 1 for a 6 second audio segment.
Conceptually, the simplest of the detection functions is theHigh
Frequency Content (HFC) approach [11, 2]. Which finds the

1 2.8 GHz Linux machine running Matlab 7.0
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Figure 1. Comparing Detection Functions over a 6 second
frame. (a) - (d): Input Signal, Complex Domain, Klapuri,
Scheirer. (e) - (h): Phase Deviation, Hainsworth, High Fre-
quency Content, Spectral Difference

Detection Percussive Tonal Psycho- Processing
Function onsets onsets acoustic time (s)
Complex x x 1.68
Klapuri x x x 9.27
Scheirer x x 5.06
Phase x x 7.60

Hainsworth x 8.53
HFC x 5.44

Specdiff x x 1.49

Table 1. Overview of detection functions. Processing time
refers to the time to generate a detection function for 60 seconds
of mono audio sampled at 44.1 kHz. Note that processing time
is very low for Complex and Specdiff, as these algorithms pro-
duce better results when then input signal is down-sampled by a
factor of 8 to give a more musically meaningful spectral range
(of the seven detection functions tested only these two showed
improved performance at this limited spectral range)

sum of frequency weighted short term spectral frames, and is
most suited to detecting wide-band percussive events.

The next group of detection functions are based around spec-
tral difference between adjacent frames.Spectral Difference [2]
is a measure of the Euclidean distance between the magnitude
spectra of two adjacent frames.Hainsworth’s approach [8] uses
longer analysis frames with Kullback-Leibler divergence as the
distance metric. Its primary emphasis is on harmonic change,
as short term percussive events tend to be averaged out. The
Complex Domain [3] method combines magnitude spectra with
phase information to simultaneously detect percussive and tonal
onsets, by measuring the spectral difference directly in the com-
plex domain. If only the phase information is used, this equates
to thePhase Deviation [2] approach which reacts to deviations in
phase velocity (which is approximately constant in steady-state,
sinusoidal regions of music signals).

The two remaining detection functions, those ofScheirer [12]

andKlapuri [10] have psychoacoustic formulations. Both meth-
ods combine amplitude envelopes from sub-bands to generate
a detection function type representation. Klapuri’s method em-
ploys a logarithmic compression to emphasise small energy changes.

3. BEAT TRACKER

Figure 2. Overview of beat tracker : we investigate varying the
mid-level representation

3.1. Algorithm overview

Having presented each of the detection functions to be tested
with our beat tracker, we now provide a brief overview of the
beat tracker itself (see figure 2).
The first stage in the algorithm is to further process the detec-
tion function. A moving median threshold is calculated and then
subtracted from the raw detection function. The unbiased auto-
correlation function of this modified detection function is then
taken. This is then passed through a shift-invariant comb filter-
bank to identify the beat period (the index of the maximum value
of the output). The comb filterbank is weighted by a tempo pref-
erence curve to encourage the beat period to be within the ap-
proximate range of 80 to 160 beats per minute (bpm). The beat
period extraction process is shown in figure 3, where the value
in applying the median threshold to the detection function can
be seen by the height of the main peak (fig. 3(f)), compared to
when the raw detection is used (fig. 3(c)). Having found the
beat period, an impulse train (with impulses at beat period inter-
vals) is cross-correlated with the detection function to find the
phase of the beats. The process is repeated over a frame basis to
track beats across the length of a file. Context dependent param-
eters are incorporated to force the beats to remain within a single
metrical in the beat period stage, and to prevent beats switching
between on and off-beats in the phase extraction stage. Further
details of the beat tracker may be found in [5].
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Figure 3. Analysis of the comb filterbank output. (a) - (c): us-
ing raw detection function. (d) - (f): effect of applying adaptive
threshold to df



3.2. Evaluation

In order to successfully compare the effect of varying the input
to our beat tracker, we must first address the issue of how to
evaluate the output of our beat tracker.
There does not currently exist a widely accepted evaluation met-
ric for audio based beat trackers. This is due, in part, to the diffi-
culties involved in obtaining accurate ground truth data, to which
algorithmically generated beats can be compared. A common
approach to obtaining ground truth is to ask trained musicians to
‘tap’ in time to musical examples; recording and then manually
correcting beat locations such that they are perceptually accept-
able. This is the approach we adopt; our labelled database con-
tains a subset of 100 files (20 files over 5 musical genres) from
a larger test database, chosen to maintain an equal distribution
across musical genre [9].
The beat tracking evaluation metric is based on the work of Goto
and Muraoka [7] and finds the ratio of longest continuously cor-
rectly tracked segment to the length of the input as a measure of
beat accuracy (figure 4). We accept an individual beatbk iff:

• bk is within +/- 20% of annotationaj

• bk−1 is within +/- 25% ofaj−1

• bk+1 is within +/- 25% ofaj+1

Although this may appear to be a strict metric, (where a single
mis-placed beat can cause the accuracy to drop from 100 % to
50 %) we can reliably say that high performance when continu-
ity is required will amount to high performance when it is not.
However we cannot say that the reserve will be true. It should be
noted also, that we have chosen not to allow multiple metrical
levels or pi-phase error (tracking off-beats instead of on-beats)
as acceptable, to prevent the possibility of a detection function
which reliably produced off-beat 1/8th notes to be assumed equal
to one which gave on-beat 1/4 notes.

Figure 4. Continuity based beat evaluation: acceptance of beat
bk is dependent not only on distance from the nearest annotated
beataj , but also how close the previous and subsequent beats
are to their annotations

4. RESULTS

The results of running each detection function across the 100
files in the database is shown in table 2 in addition to the perfor-
mance when the input is comprised of a sequence of weighted
impulses at onset locations. For each detection function we can
see noticeably reduced performance when onsets alone are used.
This may be the result of inaccuracies in the peak picking pro-
cess - either false negatives (missed detections) or false positives
(erroneous detections) which tend to flatten the autocorrelation
function taken, and therefore reduce the certainty of the output
(the extent to which a single peak is stronger than all other beat
period candidates). Alternatively, the increased width of peaks
within the detection function, compared to a sole impulse at on-
set locations, may allow beats to be tracked more effectively in

Input Accuracy Accuracy
DF using DF (% ) using onsets (% )

Complex 55.89 29.63
Klapuri 46.13 29.31
Scheirer 41.13 22.05
Phase 41.81 20.71

Hainsworth 34.86 23.81
HFC 41.08 22.76

Specdiff 55.32 29.46

Best DF per file 70.64 32.00

Table 2. Results for mid-level inputs compared to using onsets
directly

cases of variable tempo (expressive timing). Failure to track such
changes can break the continuity requirement and lead to poorer
performance.
When comparing each of the individual detection functions, the
spectral difference based approaches (Complex and Specdiff)
perform strongest. While the accuracy figures appear somewhat
low (a result of the continuity requirement), the best perform-
ing (accuracy = 55%) are equivalent to the state of the art. The
Hainsworth approach however, which is also based on spectral
difference performs least strongly of all. As shown in figure 1(f),
this is the smoothest detection function, and with a primary sen-
sitivity towards harmonic change it fails to accurately localise
beats, particularly in signals where the beat structure is predom-
inantly conveyed through percussive events.
What is perhaps most striking is that by selecting the best per-
forming detection function for each file, an improvement of al-
most 15% can be found. Despite this being a rather extreme case
of ‘over-fitting’ the data, it does suggest that increases in perfor-
mance can be achieved by investigating adaptive approaches to
detection function selection.
Towards the aim of adaptively selecting a detection function,
we investigate two intuitive methods: firstly, whether detection
functions can be associated with musical genres, and secondly
whether the concept of beat strength (a measure of the confi-
dence with which the tempo can be identified) is an appropriate
feature.

4.1. Adaptive selection using meta-data: genre labels

The breakdown of results across each musical genre is shown in
table 3. Despite the fact that overall the Complex and Specdiff
approaches were of similar accuracy, we can see that for those
genres which are typically more percussive oriented: dance, rock
and jazz, the Specdiff detection function is better than the Com-
plex, while the converse is true for folk and classical music. By
simply averaging the best performing detection function for each
genre, we find a modest improvement to give an overall accuracy
of 59% (although for only 100 files in our test database, this im-
provement may not be statistically significant).

4.2. Adaptive selection using a feature: beat strength

The use of genre provided some improvement over the Complex
or Specdiff approaches alone, this however, is overshadowed by
the fact that for a fully automated algorithm, some means of ex-
tracting the genre would have to pre-empt any beat analysis. It
would seem more desirable to be able to identify a feature which



Input Rock Dance Jazz Folk Classical
DF (% ) (% ) (% ) (% ) (% )

Complex 66.48 85.68 46.96 49.31 31.03
Klapuri 39.49 68.79 41.14 51.37 29.86
Scheirer 43.39 61.87 32.26 40.50 27.62
Phase 61.14 37.93 40.65 41.75 27.57

Hainsworth 34.83 57.70 26.32 35.26 20.22
HFC 61.82 51.10 39.37 25.17 27.93

Specdiff 70.12 93.26 49.42 37.86 25.92

Table 3. Breakdown of results according to musical genre

Input Acc. frame Acc. file Theoretical
method based (% ) based (% ) limit (% )

Best 2 DFs 48.12 46.12 63.18
Best 3 DFs 52.46 50.82 66.81

All DFs 50.42 49.88 70.64

Table 4. Results for adaptive techniques. Best 2 DFs: Complex
and Scheirer. Best 3 DFs: Scheirer, Phase and Specdiff

could be automatically extracted from the signal to guide the se-
lection process. Given that our interest is that of beat tracking,
we investigate “beat strength” as one such feature.
Originally proposed by Tzanetakis and Cook [13] (coinciden-
tally as part of a genre classification system) we derive a version
of beat strength peculiar to our beat tracker. The approach we
adopt is to find the relative height of the strongest peak of the
output of the comb filterbank (which is normalised to sum to
unity) and is shown in figure 3 (c) and (f). In cases where the au-
tocorrelation function is quite flat, the beat strength will be low,
however when there is strong periodicity it will be much higher.
Therefore the detection function with the highest beat strength is
selected as the input.
The selection between detection functions can be made either
at file level - where a single beat strength feature is extracted
from a long term autocorrelation function across the length of
the entire file. Alternatively this feature can be examined on a
frame basis. The frame based approach offers the ability to adapt
the detection function to changing properties within a single file.
It could also be implemented in a causal beat tracking algorithm
(where future beat locations are predicted solely from analysis
of past data) - two factors which do not apply when selecting a
particular detection function for an entire input.
We investigate the effect of both file and frame based selection,
using all seven detection functions and compare to the best com-
bination of two and three detection functions.
The best performing two (or three) detection functions were not
simply those with the highest overall accuracy. The method for
their selection was based on the independence of their perfor-
mance across the dataset. A search of the results for each combi-
nation of detection functions was carried out, which gave [Com-
plex, Scheirer] as the best two, and [Scheirer, Phase, Specdiff]
as the best three.
Table 4 illustrates that in each case the file based approach was
outperformed by the frame based selection, but not by any sig-
nificant amount. More importantly, none of the approaches (ei-
ther two, three or all seven detection functions) were able to give
better results than using just the Complex domain approach.

Input Accuracy
Method (% )

Complex DF 55.89
Best 3 DFs 52.46

Genre specific DF 59.15
Best DF per file 70.24

Table 5. Overview of results. Best 3 DFs refers to frame based
adaptive selection

5. OVERVIEW

In presenting results comparing which single detection function
is the best mid-level representation as well two approaches to
adaptive input selection, we have found somewhat mixed results,
as shown in table 5. Selecting detection functions based on musi-
cal genre offers a small improvement, but the beat strength fea-
ture can only degrade performance (coupled with a significant
increase in computation - as most is taken up in the generation
of the detection function, rather than the beat tracker itself).
The reason for the decrease in performance is that selecting de-
tection functions based on our formulation of beat strength is
biased towards those detection functions which are least smooth
(Scheirer and High Frequency Content for example). This can
cause a more prominent peak in the output of the comb filter-
bank, and hence lead to the selection of generally poorer per-
forming detection functions - and was particularly evident in file-
based selection (where there is no opportunity to recover from a
bad detection function selection which is possible in the frame
based approach).
Being generally smoother, the spectral difference approaches (Spec-
diff and Complex) were able to provide longer continuously cor-
rect beat outputs. This is seen to aid in the tracking of music
with expressive timing, perhaps at the expense of precision in
beat localisation. Given the difficulties in obtaining ground truth
- related to ranges of acceptable beat locations, we do not con-
sider this to be a failure of the spectral difference approaches.
In identifying the failure of beat strength, we intend to investi-
gate other low level features which can be extracted from detec-
tion functions, in combination with further hand labelled meta-
data, to improve our approach to adaptive input selection for au-
dio based beat tracking.

6. CONCLUSIONS

We have presented a comparison of onset detection functions for
beat tracking. Results indicate the spectral difference based ap-
proaches are most effective over a wide range of musical genres,
but that significant improvements are possible by adaptively se-
lecting between several detection functions to match the proper-
ties of individual input signals. Towards this aim we have inves-
tigated using musical genre to select the appropriate detection
function as well as a feature related to beat strength, but so far
we have only found an improvement when using genre related
meta-data. We intend to pursue the topic of adaptive input selec-
tion as part of our future work.

7. ACKNOWLEDGEMENTS

MEPD is supported by a College Studentship from Queen Mary
University of London.



This research has been partially supported by EPSRC Grant Ref-
erence: GR/S82213/01 Techniques and Algorithms for Under-
standing the Information Dynamics of Music and by the EU-
FP6-IST-507142 project SIMAC (Semantic Interaction with Mu-
sic Audio Contents). More information can be found at the
project website http://www.semanticaudio.org
Thanks to Juan Bello and Nick Collins for making their code
available.

8. REFERENCES

[1] P. E. Allen and R. B. Dannenberg, “Tracking musical
beats in real time,” inProceedings of International
Computer Music Conference, pp. 140-143, 1990

[2] J.P. Bello, L. Daudet, S. Abdallah, C. Duxbury, M.E.
Davies and M.B. Sandler, “A tutorial on onset detec-
tion in music signals,”IEEE Transactions on Speech
and Audio Processing - to appear 2005

[3] J. P. Bello, C. Duxbury, M. E. Davies and M. B. San-
dler, “On the use of phase and energy for musical
onset detection in the complex domain,”IEEE Sig-
nal Processing Letters, vol. 11, no. 6, pp. 553-556,
2004, July

[4] N. Collins “A comparison of sound onset detec-
tion algorithms with emphasis on psychoacoustically
motivated detection functions,” inProceedings of
118th AES Convention, Barcelona, Spain, May 28–
31, 2005

[5] M. E. P. Davies and M. D. Plumbley, “Beat tracking
with a two state model,” inProceedings of ICASSP,
Philadelphia, USA, March 18–23, 2005

[6] S. Dixon, “Automatic extraction of tempo and beat
from expressive performances,”Journal of New Mu-
sic Research, vol. 30, no. 1, March, 2001

[7] M. Goto and Y. Muraoka, “Issues in evaluating beat
tracking systems,” inWorking Notes of the IJCAI-
97 Workshop on Issues in AI and Music - Evaluation
and Assessment, pp 9-16, August, 1997

[8] S. Hainsworth and M. Macleod, “Onset detection
in musical audio signals,” inProceedings of the In-
ternational Computer Music Conference, Singapore,
September, 2003

[9] S. Hainsworth, “Techniques for the automated
analysis of musical audio,” Ph.D. thesis, De-
partment of Engineering, Cambridge Univer-
sity, April, 2004. Also available at http://www-
sigproc.eng.cam.ac.uk/∼swh21/thesis.pdf

[10] A. Klapuri, “Sound onset detection by applying psy-
choacoustic knowledge,” inProceedings of ICASSP,
pp. 3089-92, Phoenix, USA, March 15–19, 1999

[11] P. Masri and A. Bateman, “Improved modelling of
attack transients in music analysis-resynthesis,” in
Proceedings of International Computer Music Con-
ference, pp. 100-103, Hong Kong, August 19–24,
1996

[12] E. Scheirer, “Tempo and beat analysis of acoustic
musical signals,”Journal of the Acoustical Society
of America, vol. 103, pp. 588-601, January, 1998

[13] G. Tzanetakis and P. Cook, “Musical Genre Clas-
sification of Audio Signals,”IEEE Transactions on
Speech and Audio Processing, vol. 10 no. 5, July,
2002


