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Abstract—We present a new evaluation method for measuring
the performance of musical audio beat tracking systems. Central
to our method is a novel visualization, the beat error histogram,
which illustrates the metrical relationship between two qausi-peri-
odic sequences of time instants: the output of beat tracking system
and a set of ground truth annotations. To quantify beat tracking
performance we derive an information theoretic statistic from the
histogram. Results indicate that our method is able to measure per-
formance with greater precision than existing evaluation methods
and implicitly cater for metrical ambiguity in tapping sequences.

Index Terms—Beat tracking, evaluation, music information re-
trieval.

I. INTRODUCTION

T HE research topic of audio beat tracking is well known
within the music information retrieval community. Its aim

is to recover a sequence of regular time instants from a mu-
sical input that are consistent with when a human listener might
tap their foot [1]. While this problem has received much atten-
tion in terms of the development of beat tracking algorithms,
e.g., [2]–[4] and comparative studies [5], far less effort has been
placed on techniques used to measure performance. However
evaluation is extremely important; without a meaningful mea-
sure of performance it is very difficult to assess the strengths
and weaknesses of beat tracking algorithms and reliably com-
pare them.

The basis of objective beat tracking evaluation is to compare
two sequences of time instants: the output of a beat tracking al-
gorithm and a sequence of ground truth annotations. The anno-
tations are normally obtained by recording the tap times of a mu-
sical expert and then modifying them to correct any errors [6].
Given these two sequences, the role of the evaluation method
is to provide a meaningful measurement of how well the beat
locations “match” the annotations. The extent to which a match
can be determined is based on two factors: temporal localiza-
tion and metrical level. For beats to be considered accurate they
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must be close in time to the annotations and tapped at a tempo
which is meaningful for the specific musical excerpt.

We do not expect the beat locations and annotations to co-
incide precisely at the same time instants. To account for this
uncertainty most existing evaluation methods employ tolerance
windows. These are placed around each ground truth annota-
tion such that any beat falling within their range is considered
accurate. While the size of the tolerance window can be calcu-
lated in absolute time (e.g., [2]) or in proportion with
the inter-annotation-interval (e.g., [5]), the decision over
their size is somewhat arbitrary. Using too narrow a window
may fail to capture perceptually accurate forms of tapping, while
too wide and performance may be overestimated

If we consider that for most pieces of music there is not a
single unambiguous tempo at which to tap the beat [5], the issue
of metrical levels must be addressed by the evaluation method.
If only a single ground truth sequence is provided without any
information about which other metrical levels may be perceptu-
ally valid, then two options exist. The first is to consider only this
interpretation to be valid and punish other interpretations even if
they may be acceptable to a human listener. The second method
is to adopt a heuristic approach where beats can be accurate if
they are tapped at double or half the tempo of the annotations
[3]. However merely allowing 2:1 and 1:2 ratios will only be
appropriate for music with a 4/4 time-signature (i.e., four beats
per bar); meaningful metrical levels for other time-signatures
will also be punished.

Given the inherent limitations placed on beat tracking evalu-
ation by using tolerance windows and predefined metrical rela-
tionships we propose a new approach able to contend with these
issues. Our method is based on modelling the distribution of
timing error between beats and annotations. We use this distri-
bution, the beat error histogram, directly as an informative visu-
alization of beat tracking performance. From the histogram we
show how different metrical interpretations can be observed. To
provide a quantitative measure of beat tracking performance we
propose an accuracy score which indicates the information gain
a beat tracker provides over a uniformly distributed (i.e., com-
pletely unrelated) sequence of beat times compared to the anno-
tations. In effect, we measure “how much better than random”
the beats are.

Through simulations on an existing beat tracking database we
demonstrate that our approach is able to capture cases of accu-
rate tapping which are inaccurate using other methods. Further-
more, we can measure performance with greater precision than
traditional tolerance window based methods, particularly in cir-
cumstances where tolerance window based approaches indicate
100% accuracy.
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The remainder of this paper is structured as follows: in
Section II we present the beat error histogram. This is followed
by a description of the information gain measurement of per-
formance in Section III. We present results in Section IV with
conclusions in Section V.

II. BEAT ERROR HISTOGRAM

A. Measuring Beat Error

To avoid the reliance on tolerance windows we formulate our
evaluation method by measuring the timing error between beats
and annotations. Assuming a sequence of beats and annota-
tions, we notate the beat, and the annotation, . Com-
paring beat times to annotations we measure the timing error

between each beat and the closest annotation:

if

if
(1)

To contend with tempo changes, we normalise the timing error
relative to the appropriate inter-annotation-interval (IAI),

, depending on whether occurs before or after .
In this way, the timing error is bounded between 0.5 and
0.5 for all beats occurring within the range of the first to last
annotations. If any beats occur more than half the IAI before
the first or after the last annotation, these are mapped back into
the range using modulo arithmetic.

If we consider an example where the beats are tapped at half
the tempo of the annotations, then every other annotation will
be close to a beat, however no timing error measurement will be
made for the remaining annotations. Here, these “floating” an-
notations could occur at highly irregular locations and not affect
the timing error. To contend with this situation, we follow the
two-way mismatch procedure of Maher and Beauchamp [7] and
form a second sequence of beat error, , in which we measure
the timing error between each annotation and the nearest beat:

if

if
(2)

In this way, the under-detection of beats to annotations is trans-
formed into the over-detection of annotations to beats. Hence-
forth we will refer to the timing error (beats compared to
annotations) as the forward beat error and (annotations to
beats) as the backward beat error.

B. Histogram

To visualise the behavior of a beat tracking algorithm we de-
termine the probability density function (pdf) for the forward
and backward beat error sequences. Each pdf is estimated by
calculating a -bin histogram over the range of 0.5 to 0.5.
Since specifies how finely the beat error is quantized, it is im-
portant to select an appropriate number of bins. Too few (e.g.,

) and we may fail to adequately capture the shape of the
distribution. Conversely having more bins than individual error
measurements will mean some bins cannot be occupied and the
resulting histogram will be too sparse. Through informal tests
we found to be sufficient to obtain a good estimate of
the probability distribution of beat error for musical excerpts of
at least 30 seconds. For the majority of existing test databases

Fig. 1. Example forward and backward analysis (a) Annotations (solid), beats
(dashed). (b) Forward error histogram. (c) Forward circular histogram. (d) An-
notations (dashed), beats (solid). (e) Backward error histogram. (f) Backward
circular histogram.

(e.g., [3], [6]) this constraint is not problematic, however for
very short sequences our method cannot currently be applied.

Given bins, represents the estimated probability
of bin , such that the distribution of errors sum to unity, i.e.,

, where refers to either the forward beat
error, , or the backward beat error, . We calculate the
bin centres, , such that a beat error of zero will fall exactly in
the middle of a histogram bin (not at the boundary between two
histogram bins), with the same true of beat errors equivalent to

0.5 and 0.5. Plotted on a linear scale from 0.5 to 0.5, this
means that the first and last bins are half the width of the others.
In subsequent calculations the contents of these two bins are
summed together and treated as a single bin. Organizing the
histogram bin centres in this way enables a simple mapping onto
the unit circle, with circular bin centres, .
Example forward and backward beat error histograms are shown
in Fig. 1.

Visual inspection of the histograms highlights the two main
properties when comparing beat sequences: metrical relation-
ship and temporal localization. In Fig. 1(a) there are three beats
for every two annotations and hence three main peaks in the for-
ward beat error histogram. Similarly in the backward beat error
histogram [Fig. 1(d)] we find two main peaks, consistent with
two annotations occurring for every three beats. In general, if a
regular metrical relationship exists between the two sequences
it can be observed as the ratio of the number of modes in the
forward error histogram to the number in the backward error
histogram.

In terms of localization of beats and annotations, we can see
that the peaks in the histograms are not centred on a beat error of
zero. Inspection of Fig. 1(a) shows that the estimated beats are
consistently “late” compared to the annotations. Given the his-
togram visualization, any systematic offsets between the beats
and annotations can be identified and hence corrected.

III. INFORMATION GAIN

While the beat error histogram is an informative visualiza-
tion we also wish to extract a numerical measurement of beat
tracking accuracy. Towards this aim we consider two extremes
of beat tracking performance. First, where the beat locations are
identical to the annotations, we would obtain a delta function in
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both the forward and backward beat error histograms. Consid-
ering the worst case of beat tracking, where the beats and an-
notations are entirely unrelated, we should expect near uniform
distributions of beat error. This can arise in one of two ways,
either if the beats are sampled from a uniform distribution, or
if they are regular but tapped at a non-meaningful tempo (e.g.,
109 bpm compared to 100 bpm). This leads to tempo drift where
occasional beats are close annotations and considered accurate,
but no relationship exists.

Our aim is for the numerical accuracy to meaningfully reflect
these two extremes of beat tracking while accounting for tempo
drift. To this end we could measure the variance of the beat error
histogram. However, if we re-examine the examples in Fig. 1(b)
and 1(d), which are both multi-modal distributions, the resulting
high variance would not reflect the perceptual accuracy of the
beats.

An alternative is to look for a description of the peakiness of
the pdf of beat error, which can be determined by measuring the
entropy of the histogram. However, instead of using the entropy
directly, we use a related quantity, the information gain. We cal-
culate the divergence between the empirical beat error pdf of a
given beat tracking algorithm and a uniform pdf indicative of
the theoretically worst beat tracker. In effect we are measuring
the dependence between the two sequences. If they are unrelated
we will have low information gain; with high information gain
if a relationship exists.

We find the information gain, in terms of the Kul-
back–Leibler divergence between each beat error distribution
with estimated probability mass and the uniform his-
togram with bins of height as

(3)

(4)

(5)

where is the entropy of the estimated beat error dis-
tribution of the beat tracking algorithm under evaluation:

(6)

Given that we have two beat error histograms to analyze,
derived from and , we extract the both the forward
and backward information gains, and respectively. To
prevent overestimating the information gain given by the beat
tracker, which could arise if very few beats were compared to
many annotations, we keep the lower information gain, such that

. The information gain is measured in bits
and is lower and upper bounded by .

Because the entropy calculation in (6) is invariant to the or-
dering of the bins, any beat-relative shift of a histogram will
have the same information gain. Therefore tapping the “off-
beat” in reference to the annotations will have the same infor-
mation gain as beats which are “in-phase”.

Fig. 2. Scatter plots showing information gain scores for the beat tracker output
against the following evaluation methods. (a) PScore. (b) CMLc. (c) Cemgil. (d)
AMLt.

IV. RESULTS

To illustrate the properties of the information gain evaluation
method we compare it to the performance scores given by four
existing evaluation methods.

PScore: beat accuracy is measured by finding the sum
of a time-limited cross-correlation between impulse trains
representing the beats and the annotations. A tolerance
window of of the median IAI specifies the region
around each annotation for which beats can be accurate [5].
Cemgil: beat accuracy is calculated by measuring the
timing error between each annotation and the closest beat;
the timing error is evaluated on a Gaussian error function
which assigns low scores for poorly localized beats [8].
CMLc: beat accuracy is found as the ratio of the longest
continuously correct segment to the length of the excerpt
for beats tapped at the correct metrical level; each beat
must fall within a tolerance window around the
annotation and the previous beat be within the previous
tolerance window [4].
AMLt: as CMLc, however the continuity requirement is
relaxed and beats may be tapped in anti-phase (the “off-
beat”), at twice or half the metrical level of the annota-
tions [4].

On an annotated beat tracking database containing 222 ex-
cerpts [6] we measure the performance of a beat tracking algo-
rithm (available as a plugin for Sonic Visualiser1) using each of
the four evaluation methods described above and compare these
to the information gain. To visualise the differences in perfor-
mance, scatter plots are shown in Fig. 2.

In each of the scatter plots for the fixed tolerance window
methods [see Fig. 2(a), (b) and (d)], we can observe clusters of
points which score near to 100% under each evaluation method.
However, within these clusters there are a range of information

1http://isophonics.net/QMVampPlugins
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gain values. This highlights a limitation of using a fixed toler-
ance window. For many excerpts the beats are sufficiently ac-
curate to fall within the range of the tolerance windows, but
no further distinction can be made between them as the limit
of accuracy has been reached. Without repeated recalculation
of performance over a range of sizes of tolerance window [4],
any comparison between beat tracking algorithms (and discrim-
ination between 100% accurate systems) is constrained by the
choice of tolerance window. However if the output of one beat
tracking algorithm is better localized to the annotations than
another this will appear in the beat error histograms and re-
sult in a higher information gain. Used in this way, informa-
tion gain can reveal accuracy beyond the resolution of the tol-
erance windows and provide additional discrimination between
beat tracking algorithms.

The Cemgil score, in Fig. 2(c), which does not use a fixed
tolerance window, appears to be strongly correlated with infor-
mation gain. Note, for both methods it is very unlikely to obtain
“perfect” performance. For the information gain this would re-
quire all beat error measurements to fall within a single bin of
the histogram and for the Cemgil score the beat times and an-
notations would have to be identical. Although the two scores
are related, the Cemgil score is only calculated for a single met-
rical level. Therefore any beat sequences tapped at other tempi
will be punished in proportion with the number of beats and an-
notations which are not well-localized and any beat sequences
tapped on the offbeat will score zero. We can observe this be-
havior in Fig. 2(c) where several excerpts score a high informa-
tion gain but are among the least accurate for the Cemgil score.
A similar pattern can be observed for the tolerance window ap-
proaches, including the AMLt method, which allows tapping at
double or half the annotated metrical level and the offbeat. Here
other meaningful metrical relationships exist beyond the scope
of the allowed metrical levels, e.g., the “two-against-three” case
in Fig. 1.

When evaluating beat tracking systems using existing
methods we should pay particular attention to beat tracking
accuracy scores of either 100% or 0%. In the former case,
information gain can be used to discriminate between the
systems, allowing us to find the beat sequence which is best
localized to the annotations. In the latter case, a high infor-
mation gain can indicate if a relationship exists between the
beats and annotations beyond those permitted by predefined
rules; alternatively a low information gain can confirm that the
sequences are indeed unrelated.

V. CONCLUSIONS

We have presented a new evaluation method for measuring
the performance of beat tracking algorithms based on the gen-
eration of two beat error histograms, one representing the com-
parison of beat times to annotations and the other comparing
annotations to beats. From these histograms we calculate an in-
formation theoretic measure of performance based on the peak-
iness of the histograms to indicate the level of dependence be-
tween the two sequences.

While we have demonstrated our approach can contend with
the limitations of existing tolerance window based methods, it
has certain surprising properties which arise from estimating

performance from a single ground truth annotation sequence.
By explicitly choosing not to make any assumptions about other
likely metrical levels it is possible (although unlikely in prac-
tice) to achieve a high information gain from unusual relation-
ships (e.g., five beats for every three annotations). However this
would be observable by inspection of the histograms. Also, by
treating beat-relative shifts as equivalent, beats which are con-
sistently early or late can also appear accurate. Although this
may be deemed problematic, there is evidence to suggest human
tappers behave in this way [9] and again such behavior could be
identified in the beat error histograms.

In future work we will investigate how to extend our model
to exploit multiple annotation sequences, e.g., by weighting the
contribution of regions of the beat error histogram which corre-
spond to acceptable metrical relationships and offsets. In addi-
tion we plan to explore the dependence between beat tracking
algorithms by comparing their output without ground truth, e.g.,
as in [10].

Beyond its use an evaluation method we hope that our visu-
alization can be used as a diagnostic tool for investigating the
qualitative behavior of beat tracking systems towards enhancing
performance of future beat tracking systems.

Following the reproducible research model [11], audio exam-
ples and source code to regenerate the figures in this paper are
available at the Sound Software Code Repository2.
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